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SUMMARY 
In an effort to reduce the dose to operating 
technicians performing fixed-time procedures on 
encapsulated source material, a program has 
been developed to optimize the layout of 
workstations within a facility by use of a genetic 
algorithm. Taking into account the sources present 
at each station and the time required to complete 
each procedure, the program utilizes a point- 
kernel dose calculation tool for dose estimates. 
The genetic algorithm driver employs the dose 
calculation code as a cost function to determine 
the optimal spatial arrangement of workstations to 
minimize the total worker dose. 

1. BACKGROUND 
Genetic algorithms''2 are algorithms applied to 
problems of numerical optimization. The 
processes employed by such algorithms are 
developed metaphorically from the fundamental 
principles of genetics and natural selection. The 
natural operations that the genetic algorithm 
mimics are straightforward and the procedural 
simplicity of the method makes it broadly 
applicable. They are robust in their search 
capability and typically converge quickly on 
solutions to problems with many parameters. 

Unlike other optimization techniques, genetic 
algorithms begin with a population of possible 
solutions rather than a single-point guess. This 
initial population is chosen at random typically by 
use of a random number generator, and is 
therefore spread throughout the solution space to 
be searched. Each possible solution in the 
population is typically represented as a string of 
binary digits that together denote guesses for all 
parameters in the problem being analyzed. In this 
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way the string that represents the set of parameter 
values for a given individual solution is analogous 
to the chromosome of an organism in nature. For 
example, in a simple one-parameter problem with 
an initial population of three, its representative 
strings might be 1100,0101, and 0010 
corresponding to guesses of 12, 5, and 2 
respectively. 

With the initial population generated and encoded, 
a selection process analogous to natural selection 
is performed. The problem to be analyzed, also 
referred to as a cost function, is solved using the 
parameter values of each individual string. Then, 
based on the criteria of the search, that is, 
maximization or minimization of the cost function, 
the individual solutions are assessed. At this point 
the more fit individuals are saved for mating and 
the less fit individuals are discarded from the 
population. This is analogous to the process in 
natural selection where by weaker individuals 
perish while stronger individuals survive to 
reproduce. 

With the most-fit individuals selected, a crossover 
process analogous to breeding is carried out. 
Schemes for performing this process with 
representative strings range from simple to 
complex, that is, from single-point crossover in 
which strings are always broken and recombined 
at a specified point to processes where strings are 
broken and recombined at many points chosen by 
a random number generator. However, all involve 
swapping binary bits between individuals to create 
a new distinct individual that carries some 
attributes of both parents. As an example of a 
simple case of single-point crossover, consider a 
case in which the parent strings are divided in the 



center and all bits to the right of this point are 
swapped. Expanding upon the first example, 
suppose that out of the initial population of three 
individuals the strings representing the parameter 
values 12 and 5 were determined to be the most 
fit. Now, all that is needed to create a new 
generation of possible solutions is to cross the 
strings 1100 and 01 01. This yields two offspring 
1101 and 0100 corresponding to guesses of 13 
and 4 respectively. 

At this point a new and presumably more fit set of 
offspring solutions form the population of the next 
generation. However, to ensure that the most-fit 
individual of the previous generation, and perhaps 
of the current generation as well, is not lost this 
individual is carried forward into the next 
generation in a process referred to as elitist 
reproduction. If for instance the most-fit individual 
in the initial example population has been 
determined to be 12 then the next generation 
would include 12 and the two new offspring 13 and 
4. 

To complete the analogy to natural selection and 
prevent the algorithm from stalling in a local 
optimum, a mutation process is employed. Within 
randomly selected individuals, certain bits are 
chosen at random and flipped to create a mutated 
string. This process is applied very sparingly to 
prevent loss of integrity among the individuals of 
the population between generations, but the 
occasionally highly fit mutation can force the 
algorithm out of a local optimum. 

Through successive generations this process will 
discover the global optimum with the advantages 
of converging quickly and being unlikely to 
become stuck in local optima. 

11. APPROACH - DOSE MINIMIZATION 
Implementing the genetic algorithm approach to 
optimizing the spatial layout of sources within the 
facility begins with defining the problem. The 
sources may be placed at any spatial point inside 
the facility limited only by the proportions of the 
room, and the dimensions of the workspace 
assigned to each source. The operations carried 
out at each workspace are allotted a specific 
amount of time for completion and take place in a 
predetermined order. The goal in arranging the 
sources throughout the room is to minimize the 
total worker dose accumulated during the process. 
A sample portion of the flowsheet is shown in 
Figure 1. 
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T 
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Figure 1. Sample operational flowsheet. 

The program created to perform the optimization is 
comprised of two separate programs: the genetic 
algorithm and the dose estimation program that 
acts as the cost function. The variables sought by 
the genetic algorithm are the x and y coordinates 
for each source inside the boundaries of the 
facility. The fitness of each trial solution set is 
determined by the total dose calculated. 

The time constraint at each workstation is 
expressed by weighting the dose from each 
station appropriately in summing the total dose. 
The total dose value is then supplied to the 
genetic algorithm to be used as the fitness value in 
determining the contents of the next generation of 
trial solutions. In this manner a solution of source 
positions yielding the lowest total worker dose will 
be determined. 

111. TESTING 
A. Genetic Algorithm 
The genetic algorithm was tested to ensure it 
functioned properly. Some of these tests were 
standard for testing genetic algorithms. Other tests 
were created to solve problems based on cost 
functions similar to those that would be 
encountered in the actual facility optimization 
problem. The solutions to these simple problems 
were intuitively known. The problems that were 
created all consisted of arranging points within 
squares and boxes while using different features 
and modes of the genetic algorithm. 

The DeJong test bed functions3 were employed 
first in assessing the proper function of the genetic 
algorithm. These functions are considered to be 
one of the standard tools for testing genetic 
algorithms. The test bed consists of five functions 
all of which have many local optima in various 
configurations and are designed specifically to 
confuse search algorithms. These functions were 
run with satisfactory results. 

The algorithm was next tested using a two- 
dimensional problem with 4 parameters. In this 
problem there were two points that were to be 
arranged inside a square in such a manner as to 
maximize the linear distance between the points 
within the space. The solution to this problem is 



intuitively known with the correct solution &ihg to 
place the points at opposing corners. The test 
yielded a satisfactory result. 

The same problem was then run as a minimization 
problem in which the program was required to 
minimize the linear distance between the points. In 
this case all that is relevant is that the program 
places the points as close together as possible. 
The positions of the points inside the square were 
otherwise unimportant. Again, the test yielded 
adequate results. 

Similar problems of a more complex nature were 
created and used to further test the efficiency and 
function of the genetic algorithm. These included a 
three-dimensional (3-D) problem with six 
parameters involving the arrangement of three 
points inside a box, a 3-D problem with 10 
parameters requiring the arrangement of 5 points, 
and a 3-D problem with twelve parameters 
constituting the placement of 6 points. All of these 
problems were run as both maximization and 
minimization problems with satisfactory results 
that agreed with the intuitive solutions. From these 
sample problems the genetic algorithm appeared 
to yield adequate solutions and typically 
converged quickly. All calculations were 
performed on a PC with a 450 M H z  Pentium 
processor with 264MB RAM. 

B. Dose Calculation 
Dose estimates are obtained from a point-kernel 
photon-dose and diffusion-theory neujron-dose 
calculation tool called Pandemonium. 
Pandemoniumo uses a VisioTM interface to draw a 
two-dimensional geometry that contains sources, 
detectors, hydrogenous shields (and persons), 
and gloveboxes. When an item is placed in the 
VisiofM drawing page, a window opens where 
specific information for that item is entered. For 
example, when a glovebox is placed in the 
drawing, the thickness of the lead and steel is 
requested. When a source is placed in the 
drawing, isotopic, density, shielding, and material 
form information is requested. Once the geometry 
is constructed, the data is exported to the dose 
calculator. 

Neutron dose is calculated according to 

where the flux is calculated from diffusion theory at 
a distance a from the surface of a spherical source 
of radius R, the exponential term accounts for 

thermalization through hydrogenous material of 
total thickness A, the spontaneous fission and 
(a,n) source strengths are calculated according to 
material form and isotopics, and h~ is the fluence- 
to-dose conversion factor. The photon dose is 
calculated using a summation over energy groups 
of the photon flux (obtained using formulas for 
self-absorbing spherical sources and ANSI 
attenuation coefficients and buildup factors) times 
the appropriate fluence-to-dose factors. 

Because the genetic algorithm effectively supplies 
the geometric information to Pandemonium@, the 
VisioTM interface is bypassed and the only 
component of Pandemonium@ used is the actual 
dose calculation module. 

C. Coupled Dose and GA Program 
Once the Pandemoniumo program was coupled to 
the genetic algorithm as a cost function, the new 
program was tested using a number of simple 
problems with intuitively known solutions. These 
problems include a two-source problem in a 
square 30’x30’ room with detectors always at 36” 
from the sources. The detectors represent the 
positions at which workers will be stationed. Thus, 
the dose calculated at a detector yields the dose 
to a worker from all sources in the room. In this 
case the new code yielded a solution that placed 
the sources at opposite corners of the room. This 
is intuitively the correct answer. Also, an identical 
problem with five sources and detectors was run 
yielding a solution in which four of the sources 
were placed at the corners and one in the center. 
This is again intuitively the correct answer. Finally, 
a problem was run identical to the last but in a 
60’X30’ room. In this case the new code gave a 
solution with four of the sources at the corners and 
one placed at the center of one of the long walls. 
Again, this solution was intuitively correct. 

The test problems employed did not take into 
account the time weighting of the source doses. A 
new problem with three sources was devised. In 
this problem the time spent at one of the sources 
was considerably more than the other two. In this 
case the program placed the highly weighted 
source at the far end of the room and the two 
sources of lesser weight in the opposing corners. 

Testing the program with more complex scenarios 
whose solutions are not intuitive known posed a 
significant problem. It was necessary to find a 
method of comparing the solution sets obtained 
from the program to determine if the genetic 
algorithm was indeed converging on the optimal 



solution. In response a simple rendering tool was 
employed to graphically represent the dose fields 
of each solution set. Comparing the dose field 
images of multiple solution sets using the pixel 
densities in the images helps assess a particular 
solution. In some tests the solutions provided by 
the genetic algorithm appeared to be counter- 
intuitive, but upon inspection proved to be correct. 

As an example, Figure 2 contains four identical 
time-weighted sources. One source is time 
weighted by a factor of 2.5; this source is located 
in the lower right corner in Figure 2, farthest from 
the other three sources as expected. 

four weighted sources in a 30’X60’ facility. 

IV. RESULTS AND CONCLUSIONS 
The program was run using eight sources 
arranged within a 3O’x6OJ area. Each source (all 
sources identical) was weighted to reflect the 
operational time associated with procedures 
performed on the given source. Workers were 
assumed to maintain a minimum distance of 36” 
from source material during operations. The 
dimensions of workstations and containers limited 
the source arrangement. 

The results obtained were somewhat different 
from the arrangement that might be intuitively 
expected (see Table 1). The program placed two 
heavily weighted sources in proximity to one 
another. This would appear at first glance to be a 
mistake; however, when the total doses were 
calculated for this solution and compared to doses 
calculated for more instinctive solutions, the 
arrangement selected by the genetic algorithm 
generated a total dose approximately 10% lower 
than the next best solution. This solution provided 
a lower total dose by isolating two of the most 
heavily weighted sources from the remaining six 
workstations (Le., it is protecting the low dose 
operations from the high-dose operations). This is 

a counterintuitive concept that might otherwise not 
be explored during planning. 

Table 1 8-Source Location Results 
Source Weiaht Location 

1 11/37 left center 
2 16/37 top center 
3 2/37 bottom center 
8 413 7 center 

4-7 1 I37 corners 

by genetic algorithm. 

The program was capable of obtaining what would 
appear to be the optimal solution to the problem 
presented. For the spatial arrangement of sources 
the program adequately provided a solution set 
that minimized the total worker dose during fixed 
time operations. 
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